Table of Contents:

DeepSORT(Deep learning based SORT)是一种基于深度学习的视觉目标跟踪算法,它结合了深度学习和传统的目标跟踪算法SORT(Simple Online and Realtime Tracking)。

DeepSORT基于目标检测器(如YOLO、Faster R-CNN等)检测每一帧图像中的目标,并使用多特征融合(Muti-feature Fusion)技术对目标进行表示和描述,然后使用SORT算法对目标进行跟踪。在SORT算法的基础上,DeepSORT引入了Re-IDentification(Re-ID)模型来解决目标ID的确定问题,Re-ID模型通过计算目标在多个帧图像中的相似度来确定目标的唯一ID。

DeepSORT算法的优点是:精度高,鲁棒性强,对于目标的遮挡、形变等情况具有很好的适应性。它已经被广泛应用于行人、车辆等目标的跟踪和智能视频监控等领域。

DeepSORT的主要思想是将目标检测和目标跟踪两个任务相结合。首先使用目标检测算法(Faster R-CNN等)在每一帧中检测出目标物体的位置和边界框。然后,通过深度学习模型(如CNN)提取目标的特征表示,将每个目标与先前帧中已跟踪的目标进行匹配。匹配过程中会考虑目标的特征相似度、运动一致性等因素,以确定目标的身份和轨迹。DeepSORT的关键贡献之一是使用了一个强大的外观特征描述符,可以准确地区分不同目标之间的相似度。DeepSORT还通过处理目标的消失和重新出现等复杂情况,实现了对长期跟踪的支持。

参考链接